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Abstract The quantum-generalized Information Theory is applied to explore mole-
cular equilibrium states by using the resultant information content of electronic
states, determind by the classical (probability based) measures and their non-classical
(phase/current related) complements, in the extremum entropy/information princi-
ples. The “vertical” (probability-constrained) entropic rules are investigated within the
familiar Levy and Harriman–Zumbach–Maschke constructions of Density Functional
Theory. A close parallelism between the vertical maximum-entropy and minimum-
energy principles in quantum mechanics and their thermodynamic analogs is empha-
sized and a relation between the probability and phase distributions in the “horizontal”
(probability-unconstrained) phase-equilibria is examined. These solutions are shown
to involve the spatial phase contribution related to the system electron density.The
complete specification of the equilibrium states of molecular/promolecular fragments,
including the subsystem density and the equilibrium phase of the system as a whole, is
advocated and illustrated for bonded hydrogens in H2. Elements of the non-equilibrium
thermodynamic description of molecular systems are formulated. They recognize the
independent probability and phase state parameters, the associated currents, and their
contributions to the quantum entropy density and its current. The phase and entropy
continuity equations are explored and the local sources of these quantities are identi-
fied.
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1 Introduction

The Information Theory (IT) [1–8] has been successfully applied to explore the elec-
tron distributions and chemical bonds in molecules, e.g., [9–15]. It has been recently
argued [16–19] that both the electron density, or its shape factor—the probability
distribution determined by the wave-function modulus, and the system current distri-
bution, related to the gradient of the wave-function phase, ultimately contribute to the
resultant information content of the molecular electronic state. The particle density
reveals the classical information content, while the probability current generates its
non-classical complement in the resultant quantum information measure.

Many classical problems of theoretical chemistry have been approached afresh
using this IT approach, e.g., [11–13], and the entropic probes of the molecular elec-
tronic structure have provided attractive tools for describing the chemical-bond phe-
nomenon in information terms. This IT perspective introduces into the theory of
electronic structure a novel entropy-representation, which complements the famil-
iar energy-representation of the molecular quantum mechanics. Such a dual treatment
parallels that encountered in the ordinary thermodynamics. It establishes the equiva-
lent energy and entropy/information principles for determining the system equilibrium
states, provides a new, unifying perspective on molecular states, extends a variety of
tools for probing chemical processes, and enriches the range of available descrip-
tors of the bonding patterns in molecules [11–15]. The IT criteria identify the sys-
tem equilibrium states, corresponding to extrema of the quantum entropy/information
functionals [16–19]. It also increases our understanding of the classical (intuitive)
chemical concepts, e.g., the identity of Atoms-in Molecules (AIM) [9,10,20], elec-
tron/bond localization [11–15,21–23], sources and measures of the bond-multiplicity
(“order”) and its covalent/ionic composition [11–13,24], etc. The IT treatment leads to
the “stockholder” AIM of Hirshfeld [25], which can be derived from alternative global
or local variational principles of IT. The non-additive Fisher information in the Atomic
Orbital (AO) resolution [26] has been used as the Contra–Gradience (CG) criterion
for localizing bonding regions in molecules [11–15], while the related information
(kinetic energy) density in the Molecular Orbital (MO) resolution has been shown
[11,21–23] to determine the vital ingredient of the Electron-Localization Function
(ELF) [27–29]. Moreover, the phenomenological description of equilibria in molecu-
lar subsystems has been proposed [30–32], which formally resembles that developed
in the ordinary thermodynamics [33].

In the present work we focus on quantum measures of the entropy/information
content of the molecular electronic states, and particularly on the non-classical contri-
butions due to the wave-function phase, or its gradient – the probability current density.
We then discuss the vertical and horizontal extrema of the non-classical and resultant
entropy/information functionals, for the constrained and unconstrained classical con-
tributions due to the electron density/probability distribution, respectively. The use of
the equilibrium phases of subsystems as descriptors or their molecular/promolecular
origins will be advocated and the elements of the non-equilibrium (irreversible) ther-
modynamic description will be given. This development involves the two functional
state-parameters of the particle spatial probability and phase/current distributions, the
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associated fluxes and affinities, as well as the resulting quantum entropy current and
source, the vital ingredients of the entropy continuity equation.

The extremum principles of the quantum-generalized information measures, pos-
sibly constrained by the extra requirements of conserving some “geometric” (normal-
ization) and/or physical constraints, ultimately determine the associated molecular
equilibria. In the present analysis we shall first explore the vertical principles, for the
fixed electron density. We shall demonstrate that these energy and entropy/information
rules in quantum mechanics, for the conserved system entropy/information and energy,
respectively, resemble the complementary energy and entropy principles of the ordi-
nary thermodynamics. The horizontal (probability unconstrained) entropic rules will
explore the relation between the equilibrium phase and the system electron distribu-
tion. The horizontal (phase) equilibrium will be shown to exhibit spatial phase related
to the system electron density, and hence also a non-vanishing probability current
related to the gradient of the electron distribution.

Throughout the article the following tensor notation is used: A denotes a scalar
quantity, A stands for the row- or column-vector, and A represents a square or rec-
tangular matrix. The logarithm of the Shannon-type information measure is taken to
an arbitrary but fixed base. In keeping with the custom in works on IT the logarithm
taken to base 2, log = log2, corresponds to the information measured in bits (binary
digits), while selecting log = ln expresses the amount of information in nats (natural
units): 1 nat = 1.44 bits.

2 Quantum measures of the local entropy/information content

Consider the molecular electron density ρ(r) = N p(r) and its shape (probability)
distribution p(r) = [A(r)]2, the square of the classical amplitude A(r), where N
stands for the system overall number of electrons. Let us first examine the simplest
case of a single electron in the (complex) variational state at the initial time t0 ≡ 0,

ϕ(r) = R(r) exp[iφ(r)] = ϕ[R, φ; r]. (1)

Its modulus part, R(r), represents the classical amplitude A(r) of the (normalized)
spatial probability distribution,

p(r) = ϕ∗(r)ϕ(r) = R(r)2,

∫
p(r)dr = 1, (2)

while the gradient of its (spatial) phase component φ(r) generates the associated
probability current density:

j(r) = h̄

2mi
[ϕ∗(r)∇ϕ(r) − ϕ(r)∇ϕ∗(r)] = h̄

m
Im[ϕ∗(r)∇ϕ(r)] = h̄ p(r)

m
∇φ(r), (3)

In the typical molecular scenario one envisages a single electron moving in an
external potential v(r) due to the fixed nuclei (Born-Oppenheimer approximation),
say, in the diatomic molecule A–B, e.g., in H+

2 , described by the Hamiltonian
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Ĥ(r) = −
(

h̄2/2m
)

∇2 + v(r). (4)

Its eigensolutions {ϕi (r)} are determined by the stationary Schrödinger equation (SE):

Ĥ(r)ϕi (r) = Eiϕi (r), i = 0, 1, 2 . . . (5)

They correspond to the sharply specified energies {Ei }, eigenvalues of the Hamiltonian,
with the lowest eigenvalue, for i = 0, corresponding to the system ground state, and
the stationary (time independent) probability distribution pi (r) = [Ri (r)]2. One also
recalls that the non-degenerate eigenstates of the electronic Hamiltonian correspond
to the vanishing spatial phase, φi (r) = 0 ≡ φ0(r), i.e., ϕi (r) = Ri (r), and hence also
to the vanishing current ji (r) = 0. The two independent components [R, φ] or [p, j],
of a general (complex) electronic state ϕ(r) = ϕ[R, φ; r] = ϕ

[
p, j; r

]
, thus provide

the complete specification of the particle quantum state at t0 and its resultant quantum
entropy/information content [16–19].

When examining the dynamics of such quantum states one allows the time depen-
dence of both these components in the full quantum state

ϕ(r, t) = R(r, t) exp[iφ(r, t)] ≡ 〈r|ϕ(t)〉 . (6)

Its time evolution is then described by the time-dependent SE,

ih̄ ∂ϕ(r, t) /∂t = Ĥ(r)ϕ(r, t) , (7)

which marks the stationary quantum action:

A[ϕ(t)] = 〈ϕ(t)|ih̄ ∂/∂t − Ĥ |ϕ(t)〉 . (8)

One also recalls that the full stationary state of Eq. (5) exhibits the purely time-
dependent phase:

ϕi (r, t) = 〈r|ϕi (t)〉
= ϕi (r) exp [−i (Ei/h̄) t] ≡ Ri (r) exp[−iωi t] ≡ Ri (r) exp[iφi (t)], (9)

and hence the vanishing current of Eq. (3).
Both the probability distribution and its phase/current density ultimately contribute

to the resultant information content of quantum states [16–19]. The non-classical
entropy or information terms allow one to distinguish between quantum states exhibit-
ing the same electron density but differing in patterns of their probability currents.
Therefore, the wave-function modulus (amplitude of the particle density/probability
function) and its phase (or phase-gradient, i.e., the current density) constitute two fun-
damental “degrees-of-freedom” in the complete quantum IT description of the system
electronic states: ϕ ⇔ (R, φ) ⇔ (p, j).

123



J Math Chem (2014) 52:1921–1948 1925

The SE (7) and its Hermitian conjugate give rise to the probability-continuity equa-
tion,

∂p/∂t = −∇ · j or (10)

dp/dt ≡ ṗ = σp = ∂p/∂t + ∇ · j = 0, (11)

which expresses a local balance in the electron rate processes. This (p, j)-transformed
SE shows that the local change in the probability density [l.h.s of Eq. (10)] is solely
due to the probability outflow measured by the negative divergence of the probability
current density [r.h.s. of Eq. (10)]. The vanishing total time derivative (the probability
source) of Eq. (11), ṗ = σp = 0, which expresses the time rate of change of the
particle density in an infinitesimal “monitoring” volume element flowing with the par-
ticle, signifies the sourceless density/probability redistributions. Indeed, the molecular
extensive parameter ρ(r) can be neither produced nor destroyed. It also follows from
the preceding equation that the probability (wave-function) norm remains conserved
in time,

∂/∂t

[∫
p(r, t) dr

]
= ∂/∂t

[∫
ϕ∗(r, t) ϕ(r, t) dr

]
=
∫

[∂p(r, t) /∂t] dr = 0.

(12)

The probability current per particle, (j/p) ≡ V , measures the local velocity V of this
density/probability “fluid”, determined by the gradient of the phase part of the system
wave-function:

∇φ = (m/h̄) (j/p) = (m/h̄) V

= p−1Im[ϕ∗∇ϕ]. (13)

Consider the non-classical, phase/current-related complement [16–19],

Snclass.[ϕ] =
〈
ϕ

∣∣∣Ŝϕ

∣∣∣ϕ
〉
= −2

∫
p(r)[φ2(r)]1/2dr ≡ −2

∫
p(r)[π(r)]1/2dr = −2 〈|φ|〉ϕ

≡ S[p, φ] ≡
∫

p(r)Snclass.(r) dr,

Ŝφ(r) = −2[φ2(r)]1/2 = −2|φ(r)| = −2π(r)1/2 = Sϕ(r), (14)

to the classical entropy density Sclass.(r) ≡ Sp(r) of familiar Shannon functional in
the classical, probability-based IT [3,4],

Sclass.[ϕ] =
〈
ϕ

∣∣∣Ŝp

∣∣∣ϕ
〉
= −

∫
p(r) log p(r)dr

= 〈− log p〉ϕ ≡ S [p] ≡
∫

p(r)Sclass.(r)dr,

Ŝp(r) = − log p(r) = Sp(r). (15)
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The non-classical density-per-electron Sϕ(r) is proportional to the local magnitude
of the phase function, |φ| = [φ2]1/2, the square root of the phase-density π = φ2,
with the particle probability p providing the local “weighting” factor in the associated
average (global) functional, while the classical density Sclass.(r) is seen to be deter-
mined by the negative logarithm of the system probability density. Together these two
components generate the overall, resultant Shannon measure of the quantum indeter-
minicity content due to both the probability and current distributions in the complex
quantum state ϕ [16–19]:

S [ϕ] = Sclass. [ϕ] + Snclass. [ϕ] =
〈
ϕ

∣∣∣Ŝ
∣∣∣ϕ
〉
≡
∫

p(r)S(r)dr ≡
∫

S (r)dr,

Ŝ(r) = Ŝp(r) + Ŝϕ(r) = Sp(r) + Sϕ(r) = S(r), (16)

where S (r) = p(r)S(r) stands for overall density of the quantum entropy functional.
We also recall that the Fisher information for locality events [1,2], called the intrin-

sic accuracy, provides the complementary (gradient) measure of the classical infor-
mation content in the quantum state ϕ(r):

I class.[ϕ] =
〈
ϕ

∣∣∣Îp

∣∣∣ϕ
〉
=
∫

p(r)[∇lnp(r)]2dr =
〈
(∇lnp)2

〉
ϕ

=
∫

[∇ p(r)]2/p(r)dr = I [p] = 4
∫

[∇ A(r)]2dr ≡ I [A] ,

Îp(r) = [∇ lnp(r)]2 = [∇ p(r)/p(r)]2 = Ip(r) = 4[∇ R(r)]2. (17)

This classical-amplitude functional I [A] is then naturally generalized into the domain
of complex probability amplitudes (wave functions) of molecular quantum mechanics
[26],

I [ϕ] = 4
∫

|∇ϕ(r)|2dr =
∫

I (r)dr ≡ 8m

h̄2 T [ϕ] (18)

The quantum information functional is thus seen to be related to the expectation value
of the electronic kinetic energy:

T [ϕ] ≡ 〈φ| T̂ |φ〉 = − h̄2

2m

∫
φ∗(r)	φ(r)dr = h̄2

2m

∫
|∇φ(r)|2dr. (19)

This kinetic energy functional consists of the classical, von Weizsäcker’s [34] contri-
bution,

T [p] = h̄2

8m

∫ [∇ p(r)]2

p(r)
dr = h̄2

2m

∫
[∇ R(r)]2dr

= T class.[ϕ] = 〈
ϕ
∣∣Tp

∣∣ϕ〉 ,
Tp(r) = h̄2

8m
[∇ p(r)/p(r)]2 = h̄2

2m
[∇ R(r)/R(r)]2, (20)

123



J Math Chem (2014) 52:1921–1948 1927

depending solely upon the electron probability density, and the non-classical,
(phase/current)-related term

T [p, j] = m

2

∫
j(r)2

p(r)
dr = h̄2

2m

∫
p(r)[∇ϕ(r)]2dr

= T [p, φ] = T nclass.[ϕ] = 〈ϕ|Tϕ |ϕ〉, Tϕ(r) = h̄2

2m
[∇ϕ(r)]2. (21)

This probability/phase separation gives a transparent partition of the overall kinetic
energy functional:

T [ϕ] =
〈
ϕ

∣∣∣T̂
∣∣∣ϕ
〉
= T [p] + T [p, φ] = T class. [ϕ] + T nclass. [ϕ]

=
∫

p(r)T (r)dr, T (r) = Tp(r) + Tϕ(r) (22)

Notice, however, that the effective (multiplicative, real) “operator” T (r) measuring the
density-per-electron of the probability functional T [p], derived from equality of the
quantum expectation values,

〈
ϕ

∣∣∣T̂
∣∣∣ϕ
〉
= 〈ϕ |T | ϕ〉 =

∫
T (r)p(r)dr = T [p] , (23)

differs from the true (differential) kinetic energy operator T̂(r) = − (
h̄2/2m

)∇2.
A similar division applies to the resultant, quantum Fisher information:

I [ϕ] = I class. [ϕ] + I nclass. [ϕ] ≡
∫

p(r)[I class.(r) + I nclass.(r)]dr

= I [p] + 4
∫

p(r)[∇φ(r)]2dr ≡ I [p] + I [p, φ]

= I [p] + 4

(
m

h̄

)2 ∫ j2(r)
p(r)

dr ≡ I [p] + I [p, j], (24)

where the relevant information densities-per-electron read:

I class.(r) = [∇ p(r)/p(r)]2 = 4[∇ R(r)]2,

I nclass.(r) = 4 (m/h̄)2 [j(r)/p(r)
]2 = 4[∇φ(r)]2. (25)

These two Fisher-information components can be thus expressed as the quantum
mechanical expectation values of the related (multiplicative) “operators” (informa-
tion densities):

I class.[ϕ] = 〈
ϕ
∣∣Ip

∣∣ϕ〉 , Ip(r) = [∇ p(r)/p(r)]2, and

I nclass.[ϕ] = 〈
ϕ
∣∣Iφ∣∣ϕ〉 , Iφ(r) = 4[∇φ(r)]2, (26)
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giving the associated expression for the resultant quantum information measure:

I [ϕ] = I [p] + I [p, φ] = I class.[ϕ] + I nclass.[ϕ] = 〈ϕ|I |ϕ〉
=
∫

p(r)I (r)dr =
∫

I (r)dr, I (r) = Ip(r) + Iφ(r) (27)

Both the classical and non-classical densities-per-electron of the complementary Shan-
non and Fisher measures of the quantum information content are mutually related via
the common-type dependence [16–19]:

I class.(r) = [∇lnp(r)]2 =
[
∇Sclass.(r)

]2
and

I nclass.(r) =
(

2m j(r)
h̄ p(r)

)2

≡ [∇Snclass.(r)]2. (28)

In other words, the square of the gradient of the local Shannon probe in the state resul-
tant quantum “indeterminicity” (disorder) generates the density of the corresponding
Fisher measure of the state quantum “determinicity” (order).

To summarize, the system electron distribution, related to the wave-function mod-
ulus, reveals the probability (classical) aspect of the molecular information content
[1–8], while the phase(current) facet of the molecular state gives rise to the specifi-
cally quantum (non-classical) entropy/information terms [16–19]. Together these two
contributions allow one to monitor the full information content of the non-equilibrium
or variational quantum states, providing the complete IT description of their evolution
towards the final equilibrium.

3 Vertical solutions and horizontal phase-equilibria

As in ordinary thermodynamics, the lowest (stationary) equilibrium of the molecular
ground state ϕ0 alternatively results either from the minimum-energy principle, ground-
state entropy constrained, or from complementary, ground-state energy constrained
IT principles: of the maximum of the non-classical Shannon entropy or the minimum
of the quantum Fisher information [17,19]. To illustrate this point we again refer to
the illustrative example of a single particle described by the Hamiltonian of Eq. (4) in
the trial state ϕ(r) of Eq. (1).

Consider first the minimum principle of the expectation value of the system elec-
tronic energy in the modulus-constrained trial state ϕ0(r) = R0(r) exp[iφ(r)], where
R0(r) = [p0(r)]1/2,

Ev[ϕ0] =
〈
φ0
∣∣∣ Ĥ

∣∣∣φ0
〉
= (h̄2/2m)

∫
[(∇ R0)

2 + R2
0(∇ϕ)2]dr

+
∫

R2
0vdr ≡ E0

v [ϕ], (29)
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for the conserved (phase-independent) entropy S0 [ϕ0] = Sclass. [p0] in the system
ground-state ϕ0(r) = R0(r), for which φ(r) = φ0 = 0, and hence ∇φ0 = j(r) =
j0(r) = 0,

Snclass. [ϕ0] ≡ S [φ0] = I nclass. [ϕ0] ≡ I [φ0] = 0 or

S [ϕ0] = Sclass. [ϕ0] = S [p0] and I [ϕ0] = I class. [ϕ0] = I [p0] .

(30)

This entropy/information-constrained, S0 = S[φ0] = I0 = I [φ0] = 0, minimum-
energy principle correctly predicts the molecular ground-state equilibrium:

min
φ

E0
v [φ] = 〈φ0| Ĥ |φ0〉 = (h̄2/2m)

∫
(∇ R0)

2dr +
∫

R2
0vdr ≡ Ev[ϕ0]

=
(

h̄2

8m

)∫
(∇ p0)

2

p0
dr +

∫
p0vdr = Ev[p0] (31)

For this constrained value of system ground-state electronic energy, E0 = Ev [p0], this
optimum solution also marks the maximum of the variational non-classical entropy
S[p0, φ] and the minimum of the associated density-constrained quantum Fisher infor-
mation I [p0, φ]:

maxφ S [p0, φ] = S [p0, φ0] = minφ I [p0, φ] = I [p0, φ0] = 0. (32)

Therefore, we have arrived at a remarkable parallelism with the ordinary thermo-
dynamics: the ground-state stationary solution results from the equivalent electron-
density constrained (vertical) variational principles: of the system minimum electronic
energy or the extremum of the quantum entropy/information.

Let us now examine the associated Euler equations determining the optimum orbital
phase for the fixed ground-state probability distribution p0 = R2

0 in this simplest, one-
electron case. One observes that the optimum solutions are derived from the extrema of
the non-classical entropy/information functionals S[p0, φ] and I [p0, φ], for the fixed
classical contributions S[p0] and I [p0], respectively. Since in quantum mechanics the
phase of wave-functions is determined only up to an arbitrary constant, its sign is
physically irrelevant. In what follows, we thus assume φ(r) ≡ |φ(r)| = π(r)1/2 ≥ 0.
The vertical extrema of the two preceding equations,

maxφ S[p0, φ] or minφ I [p0, φ], (33)

give rise to the following Euler equations for the optimum phase φ = φopt. in the
modulus-constrained trial state ϕ0(r) = ϕ[p0, φ; r]:

δ
〈
ϕ0
∣∣∣Ŝϕ

∣∣∣ϕ0
〉
/δϕ0(r)∗

∣∣
ϕ=ϕopt. = 0 or Ŝϕopt. (r)ϕ0(r) = −2φopt.(r)ϕ0(r) = 0

δ
〈
ϕ0
∣∣∣Îϕ
∣∣∣ϕ0

〉
/δϕ0(r)∗

∣∣
ϕ=ϕopt. = 0 or Îϕopt. (r)ϕ0(r) = 4[∇φopt.(r)]2ϕ0(r) = 0.

(34)
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Hence, both these (non-classical) extreme entropy/information rules properly predict
the stationary, ground-state solution φopt.(r) = φ0(r) = 0 as the vertical equilibrium
state of this model system: ϕeq.[p0, φ

opt ; r] = ϕ[p0, φ0; r] = ϕ0(r).
We thus conclude, that the non-classical, (phase/current)-related Extreme Infor-

mation Principles (EPI) correctly identify the lowest eigenstate of this one-electron
Hamiltonian as the vertical equilibrium state of the molecule, for the fixed ground-
state probability distribution, in which all physical quantities become functionals of the
system electron density alone, in accordance with the first Hohenberg–Kohn theorem
of the modern DFT [35,36]. A generalization to N > 1 case, using the determinantal
wave-functions for the specified ρ (or p) of Harriman [37], Zumbach and Maschke
[38] (HZM), confirms this one-electron result [18,19] (see also the following two
sections).

Let us similarly explore implications of the horizontal extrema of the resultant
(quantum) entropy/information content, combining both the classical and non-classical
contributions, subject only to the “geometric” constraint of the wave-function or prob-
ability normalization. The associated equilibrium states are now determined by the
extrema of the corresponding auxiliary orbital functionals including the relevant infor-
mation term and the constraint 〈ϕ|ϕ〉 = ∫

p(r)dr = 1 multiplied by the Lagrange
multiplier μ enforcing this unit norm of the wave-function ϕ, i.e., the normalization
of the electron probability density p:

�S[ϕ] =
〈
ϕ

∣∣∣Ŝ
∣∣∣ϕ
〉
− μ 〈ϕ|ϕ〉 and �I [ϕ] =

〈
ϕ

∣∣∣Î
∣∣∣ϕ
〉
− μ 〈ϕ|ϕ〉 . (35)

The resulting Euler equations for the optimum orbital in this horizontal equilibrium
state, expressed in terms of the system probability density p and the equilibrium phase
φeq.(r) = φeq.[r; p]

ϕeq.[r; p, φeq.[p]] ≡ ϕeq.[r; p] (36)

correspond to the vanishing functional derivative with respect to ϕ∗(r) of the orbital
functionals of Eq. (35):

δ�S[ϕ]/δϕ∗(r)
∣∣
φ=φeq. = {Ŝ[r; p, ϕeq.[p]] − μ}ϕeq.(r) = 0 or

{− lnp(r) − 2φeq. [r; p] − μ}ϕeq.(r) = 0, and (37a)

δ�I [ϕ]/δϕ∗(r)
∣∣
φ=φeq. = {Î[r; p, ϕeq.[p]] − μ}ϕeq.(r) = 0 or

{[∇ p(r)/p(r)]2 + 4[∇φeq.(r)]2 − μ}ϕeq.(r) = 0. (37b)

The first of these two horizontal principles predict a non-vanishing spatial phase
related to the system probability distribution [16–19],

φeq. [r; p] = − (1/2) lnp(r) + const. ≡ φeq.(r), (38)

and hence:

ϕeq. [r; p] = R(r) exp
[
iφeq.(r)

] = R(r) exp [− (1/2) lnp(r)] ≡ ϕeq.(r). (39)
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We call such IT-equilibrium states, corresponding to the energy-unconstrained extrema
of the resultant (quantum) entropy/information measures, the phase-equilibria [39] of
the system under consideration. One also observes that the second principle [Eq. (37b)]
does not have real solutions. This suggests a change of sign of the non-classical Fisher
measure, by replacing I nclass.[ϕ] with Ĩ nclass.[ϕ] = −I nclass.[ϕ] in the modified
resultant gradient measure Ĩ [ϕ] = I class.[ϕ] + Ĩ nclass.[ϕ], after which one again
recovers the equilibrium phase of Eq. (39) as the optimum “thermodynamic” solution.

4 Molecular equilibria in N-electron systems

Next, let us similarly examine the relevant equilibrium states in many-electron sys-
tems. In modern DFT [35,36] one often refers to the vertical states and principles
[10–13,18,19,37,40–43] corresponding to the fixed density or probability distribu-
tion of electrons, e.g., in Levy’s [40] construction of the universal density functional
for the sum of the electron kinetic and repulsion energies. They give rise to the cor-
responding vertical IT equilibria, which are solely determined by the extrema of the
non-classical entropy/information functionals. Accordingly, the variational principles
of the resultant information measure (density unrestricted) similarly determine the
horizontal phase equilibria in molecules.

A related problem of constructing the antisymmetric wave function of N fermions
yielding the prescribed density ρ(r), vital for solving the familiar N -representability
problem of DFT, has been tackled by Harriman [37] using crucial insights due to Macke
[41] and Gilbert [42]. Its three-dimensional generalization by Zumbach and Maschke
[38] introduces the complete set of the density-conserving Slater determinants. They
are build using the (plane-wave)-type equidensity orbitals

{ϕk(r) = R(r)exp [iΦk(r)]}, (40)

which offer a convenient framework for an extension of the above one-particle IT
analysis to general N -electron systems [18,19].

In constructing the orthogonal Slater determinants that generate the specified elec-
tron density these orbitals adopt equal, density-dependent modulus R(r) = p(r)1/2 and
the spatial phase

Φk(r) = k · f (r) + φ(r) ≡ Fk(r) + φ(r), (41)

with the density-dependent vector function f (r) = f [r; p], common to all equidensity
orbitals, linked to the Jacobian of the r → f (r) transformation.

The optimum (orthonormal) HZM orbitals [37,38] for the specified ground-state
probability distribution p0(r) = [R0(r)]2,

ϕk(r) = [p0(r)]1/2 exp
{
i
[
k · f [r; p0] + φ(r)

]}
≡ R0(r) exp(iΦk[r; p0]) ≡ ϕk[r; p0] , (42)
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are shaped by the “orthogonality” phase Fk[r; p0] = k · f [r; p0], with the wave-vector
(reduced momentum) k and the the density-dependent spatial vector field f 0(r) =
f [r; p0] resulting from the ordinary variational principle for the system minimum
electronic energy, e.g., in the familiar Self-Consistent Field (SCF) theories [36,44,45].
The optimum form of the remaining part φ(r) of Φk(r), called “thermodynamic” phase
[19], results from the quantum Extreme Physical Information (EPI) rule, for the given
ground-state density ρ = ρ0 or the associated probability distribution p = p0. The lat-
ter are determined at the energy optimization stage, which generally gives φopt.(r) =
φeq. [r; p0] and hence j

[
r;ϕeq. [p0]

] 
= 0. Therefore, the horizontal equilibrium
state of N electrons again implies a non-vanishing phase-gradient and hence also
a presence of a finite probability current.

The spatial phase function Φk(r) of equidensity orbitals thus involves the (orbital-
specific) orthogonality (geometric) contribution k · f (r) ≡ Fk(r), which enforces the
independence of these one-particle states, and a “thermodynamic” term φ(r) common
to all orbitals. The Slater determinants build from the specific selection of N different
equidensity orbitals,


k1,k2,...,kN (N ) = (1/
√

N !) det(ϕk1 , ϕk2 , . . . , ϕkN ) ≡ 
k(N ), ki 
= k j for i 
= j,

(43)

then by construction reproduce the prescribed electron density ρ(r),

ρ(r) = N p(r) =
N∑

i=1

∣∣ϕki (r)
∣∣2. (44)

They constitute the complete orthonormal system of N -particle functions capable of
representing any molecular state of N electrons for the specified electron distribution
p(r), in the HZM Configuration-Interaction (CI) expansion:


0 (N ) =
∫

C0(k) 
k(N ) dk. (45)

Let us explore the relation between the (horizontal) equilibrium phase of orbitals
and the molecular probability distribution in general many-electron systems. In the
single-determinant approximation,


k = 
k1,k2,...,kN = 
[N ; p] = (N !)−1/2 det({ϕl [p]}),
ϕl [p] = [p(r)]1/2 exp[iΦl [r; p]],

Φl [r; p] = Φl [r; kl[p], p] = kl [p] · f[r; p] + φeq. [r; N , p] ≡ Φl(r) ≥ 0, (46)

the average quantum entropy or the associated overall gradient measure of the infor-
mation content are given by the sums of the corresponding orbital contributions, the
orbital expectation values of the one-electron entropy/information operators:
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S[
[p]] =
∑

l

〈
ϕl [p]

∣∣∣Ŝ
∣∣∣ϕl [p]

〉
=
∑

l
S[ϕl [p]] or

I [
[p]] =
∑

l

〈
ϕl [p]

∣∣∣Î
∣∣∣ϕl [p]

〉
=
∑

l
I [ϕl [p]] . (47)

For equidensity orbitals the classical, modulus-related contributions are identical, so
that the overall probability-entropy in 
 (N ) reads:

Sclass. [
[p]] =
∑

l

〈
ϕl [p]

∣∣∣Ŝp

∣∣∣ϕl [p]
〉
= NS[p] . (48)

The phase-entropy now inculdes the following average orthogonality and thermody-
namic contributions of N electrons:

Snclass. [
[N , p]]=
∑

l

〈
ϕl [p]

∣∣∣ŜΦ

∣∣∣ϕl [p]
〉
=−2

∫
p(r)

{∑
l
Φl [r; N,p]

}
dr

=−2
∫

p(r)
(∑

l
kl · f [r; p]

)
dr−2

∑
l

∫
p(r)φeq. [r; N,p] dr

≡−2N
∫

p(r){K(k [p]) · f [r; p] + φeq. [r; N , p]}dr, (49)

where the average “wave-number” vector of 
k

K(k [p]) = N−1
∑

l

kl [p] . (50)

The horizontal equilibria mark the extrema of the auxiliary entropy/information
functionals with respect to thermodynamic phase:

δ{S[
]−μ 〈
|
〉}=0 or δ{ Ĩ [
]−μ 〈
|
〉}=0, 〈
|
〉=
∏

l

〈ϕl |ϕl〉=1,

(51)

where Ĩ [
] ≡
〈

(N )

∣∣∣ˆ̃I(N )

∣∣∣
(N )
〉

= I class.[
] + Ĩ nclass.[
] = I class.[
]
− I nclass.[
] ≡ ∑

l

〈
ϕl [p]

∣∣∣ˆ̃I
∣∣∣ϕl [p]

〉
.

By performing independent variations {δϕ∗
l } of the complex-conjugate orbitals

these principles give:

∑
l

〈
δϕl

∣∣∣Ŝ − μ

∣∣∣ϕl

〉
= 0 or

∑
l

〈
δϕl

∣∣∣ˆ̃I − μ

∣∣∣ϕl

〉
= 0. (52)

For arbitrary variations these relations imply the following Euler equations,

[Ŝ − μ]ϕeq.
l = 0 or [ˆ̃I − μ]ϕeq.

l = 0, l = 1, 2, . . . , N , (53)

to be satisfied by the optimum, equilibrium equidensity orbitals.
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For example, the horizontal principle of the stationary (resultant) quantum entropy
now reads:

{− lnp(r) − 2K(k [p]) · f [r; p] − 2φ
eq.
l [r; p] − μ}ϕeq.

l (r) = 0. (54)

It generates the optimum (probability-related) thermodynamic phase,

φ
eq.
l [r; p] = − (1/2) lnp(r) − K(k [p]) · f [r; p] + const.

≡ − (1/2) lnp(r) − K(k [p]) · f [r; p] = φeq. [r; N , p] , (55)

where we have again absorbed the constant phase contribution, irrelevant in quantum
mechanics, by an appropriate choice of the zero value of orbital phases. It additionally
includes the second, “orthogonality” contribution, which was missing in the one-
electron case [Eq. (38)]. Therefore, the resultant phase of the equilibrium equidensity
orbital ϕ

eq.
l reads:

Φl [r; N , p] = kl [p] · f [r; p] + φeq.[r; N , p]

= {kl [p] − K(k [p])} · f [r; p] − (1/2) lnp(r)

≡ δkl [p] · f [r; p] − (1/2) lnp(r) ≡ Fl [r; p] − (1/2) lnp(r). (56)

The same prediction follows from the modified average Fisher information Ĩ [
].
It also generates equal classical contributions from each equidensity orbital,

I class. [
[p]] =
∑

l

〈
ϕl [p]

∣∣∣Îp

∣∣∣ϕl [p]
〉
= NI[p] , (57)

and the following non-classical contributions due to orbital orthogonality and thermo-
dynamic phase:

Ĩ nclass.[
[N , p]] =
∑

l

〈
ϕl [p]

∣∣∣ˆ̃IΦ
∣∣∣ϕl [p]

〉
= −4

∫
p(r)

{∑
l

∇Φl [r; N , p]
}2

dr

= −4
∫

p(r)

{
∇
∑

l

(
kl · f [r; p] + φeq.[r; N , p])

}2

dr

≡ −4N 2
∫

p(r)
{∇ (

K(k[p] · f [r; p] + φeq.[r; N , p])}2
dr,(58)

where ∇(K · f ) = ∑
α Kα∇ fα .

The horizontal principle of the stationary (modified) resultant Fisher information
Ĩ [
] now gives the following Euler equation involving relevant gradient squares:

{[∇lnp(r)]2 − 4(∇[K(k [p]) · f [r; p] + φ
eq.
l [r; p]])2 − μ}ϕeq.

l (r) = 0. (59)
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It implies the associated relation between the gradients themselves:

−∇lnp(r) = 2∇{K(k [p]) · f [r; p] + φ
eq.
l [r; p]} or

−lnp(r) = 2{K(k [p]) · f [r; p] + φ
eq.
l [r; p] , (60)

which again determines the equilibrium thermodynamic phase of Eq. (55).
Therefore, the (horizontal) phase-equilibrium marks the resultant orbital phases

determined by the electron probability distribution alone. For p = p0 this is a manifes-
tation of the Hohenberg–Kohn theorem [35]: the electron density uniquely determines
the equilibrium equidensity orbitals:

keq. = k[p0] , f eq. = f [p0] , φeq. = φeq.[p0] . (61)

These spatial phases imply equal thermodynamic contribution,

jl [r;φeq ] = − h̄

2m
∇ p(r), (62)

to the overall current density in the spin-orbital ϕ
eq.
l (r),

jl(r)eq. = h̄ p(r)
m

∇ (δkl [p] · f [r; p]) + j[r;φeq ] = jl [r; kl ] + jl [r;φeq ]. (63)

The resultant thermodynamic current of N electrons is thus shaped by the density
gradient:

j[r;φeq ] =
∑

l

jl
[
r;φeq

] = N jl
[
r;φeq

] = − h̄

2m
∇ρ(r), (64)

while the “orthogonality” phases give rise to the vanishing average:

j[r; k, p] =
∑

l

jl [r; kl ] = h̄ p(r)
m

∇
{(∑

l

δkl [p]

)
· f [r; p]

}
= 0, (65)

since
∑

l δkl = 0. Therefore, in the (horizontal) phase-equilibrium state of N eletrons,
the direction of the average resultant current is determined by the negative gradient of
the molecular electron density, in full agreement with the Hohenberg–Kohn theorem
[35].

To summarize: the phase side of the molecular electronic structure reflects its IT
“entropic” aspect. The complex orbitals in the system (horizontal) phase equilibrium
have been shown to exhibit a non-vanishing particle current, due to the state thermo-
dynamic phase φeq. [r; N , p]. This state is thus qualitatively different from the lowest
eigenstate (assumed non-degenerate) of the N -electron Hamiltonian,
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Ĥ(N ) = V̂ne(N ) + [T̂(N ) + V̂ee(N )] ≡
N∑

i=1

v(i) + F̂(N ), (66)

where F̂(N ) combines the electron kinetic (T̂) and repulsion (V̂ee) energy operators,
in which the probability current identically vanishes.

Such an “entropic” interpretation has been also attributed [11–13] to the density-
constrained principles of modern DFT, in the vertical (entropic) searches performed for
the specified electron density ρ, e.g., in Levy’s [40] constrained-search construction
of the universal part of the energy density functional,

F[ρ] = T [ρ] + Vee[ρ] = inf
→ρ

〈



∣∣∣F̂
∣∣∣

〉
≡
〈

[ρ]

∣∣∣F̂
∣∣∣
[ρ]

〉
. (67)

In this variational procedure one searches over the wave functions 
(N ) of N elec-
trons, which yield the given electron density ρ, symbolically denoted by 
→ρ, and
calculates the v-independent part F[ρ] of the density functional for the system overall
electronic energy,

Ev[ρ] =
∫

v(r)ρ(r)dr + F[ρ], (68)

as the lowest value (infimum) of the expectation value of F̂(N ). When this search
is performed for the fixed ground-state density ρ = ρ0 = N p0 it also implies the
fixed DFT value Ev[ρ0] of the system electronic energy, by the first Hohenberg-Kohn
(HK) theorem [35]. Notice, however, that only at the exact ground-state 
[ρ0] the
expectation value of the system energy recovers the DFT energy level:

Ev[ρ0] =
〈

[ρ0]

∣∣∣Ĥ
∣∣∣
[ρ0]

〉
≤
〈

→ρ0

∣∣∣Ĥ
∣∣∣
→ρ0

〉
. (69)

This feature is reminiscent of the classical criterion for determining the equilibrium
state formulated in the entropy representation of the ordinary thermodynamics [33],
viz., the maximum-entropy principle for constant internal energy. Indeed, in accordance
with the second HK theorem [35] the familiar variational principle for determining the
ground-state wave-function at the minimum of the system energy can be interpreted as
the DFT optimization over all admissible densities. It involves the “internal” (entropic)
search over functions of N fermions that yield the current trial density of the “external”
(energetic) search:

min


〈



∣∣∣Ĥ
∣∣∣


〉
=minρ Ev[ρ]=minρ

{∫
v(r)ρ(r)dr + inf
→ρ

〈



∣∣∣F̂
∣∣∣


〉}
. (70)

Consider now the equilibrium principles for the vertical extrema of the system entropy
or information, corresponding to the fixed ground-state electron density ρ = ρ0 or its
probability factor p = ρ0/N = p0 determined in the external search of the preceding
equation. In DFT the internal, entropic principle involves the search for the optimum
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wave function 
(N ) corresponding to the fixed external potential v due to the system
nuclei:

E[
[ρ0]] = Ev[ρ0] =
∫

v(r)ρ0(r)dr + inf
→ρ0

〈



∣∣∣F̂
∣∣∣


〉

=
∫

v(r)ρ0(r)dr + F[ρ0]

=
∫

v(r)ρ0(r)dr + Vee[ρ0] + inf
→ρ0
〈
| T̂ |
〉 (71)

One observes a presence of Levy’s universal functional F[ρ] as the crucial (entropic)
part of this information principle. Notice also that in DFT the external potential and
electron-repulsion energies are fixed by the frozen ground-state density, so that the
optimum state also marks the infimum of the Fisher measure of the information content
related to the system average kinetic energy.

Consider the resultant Fisher information in the electronic state approximated by a
single Harriman determinant of Eq. (43), 
(N ) ≈ 
k(N ),

I [
k] = 4
N∑

i=1

∫ ∣∣∇φki (r)
∣∣2dr = 8m

h̄2 T [
k] ≡
∫

p(r)I (r)dr

=
∫

p(r)
[

I class.(r) + I nclass.(r)
]

dr = I [p] + I [p, k, φ], (72)

proportional to the system average kinetic Energy

T [
k] ≡ 〈
k| T̂ |
k〉 = h̄2

2m

N∑
i=1

∫ ∣∣∇φki (r)
∣∣2dr

≡ T class. [
k] + T nclass. [
k] ≡ T [p] + T [p, k, φ]. (73)

The latter consists of the “classical”, von Weizscker’s density functional T [p], depend-
ing solely upon the particle distribution,

T class.[
k] = h̄2 N

8m

∫ |∇ p(r)|2
p(r)

dr = T [p], (74)

and the “non-classical”, (phase/current)-dependent contribution,

T nclass.[
k] = h̄2

2m

∫
p(r)

N∑
l=1

(∇[kl · f (r) + φ(r)])2dr = T [p, k, φ], (75)

related to the corresponding quantum-information terms of Eq. (72).
In the vertical (ground-state) search, for p = p0 = ρ0/N , it is the phase compo-

nent of the quantum state which is being optimized. The condition of the extremum
(minimum) Fisher information I [
k[p0]],
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δ I [
k[p0]] /δφ(r) = ∂ I [p0, φ]/∂φ(r) = 0

or
N∑

l=1

{kl · f [r; p0] + φeq.[r; p0]} = 0, (76)

determines the equilibrium thermodynamic phase φeq. [p0; r] that minimizes I [p0, φ],

φeq. [r; p0] = −
(

1

N

N∑
l=1

kl

)
· f [r; p0] ≡ −K(k) · f [r; p0]. (77)

It is seen to contain only the second, “orthogonality” contribution of Eq. (55). There-
fore, the vertical equilibrium phase is determined by the average “wave-number” vector
K in 
k = 
k1,k2,...,kN , for which the density of I nclass. exhibits the least structure,
i.e., the maximum indeterminacy. Hence, the vertical-equilibrium equidensity orbitals,

ϕkl [r; p0] = [p0(r)]1/2 exp(i{(kl − K) · f [r; p0]})
≡ [p0(r)]1/2 exp{iδkl · f [r; p0]}, (78)

lead to the identically vanishing non-classical kinetic energy

T nclass. [p0, φ
eq.[p0]

]= h̄2

2m

∫
p0(r)

(
∇
{[∑

l

δkl

]
· f [r; p0]

})2

dr=0, (79)

due to a vanishing overall “orthogonality” current [Eq. (65)]:

j[r; k, p0] = h̄

m
p0(r)∇

([
N∑

l=1

δkl

]
· f [r; p0]

)
= 0. (80)

To conclude this section, let us summarize these energy/information principles for
the one-determinantal HZM approximation of the system ground-state wave function

0 (N ) = 
 [N , v]:


0 (N ) ∼= 
k0 [N , ϕ0] ≡ 
k0(N ) ⇒ ρ0 = N p0, (81)

e.g., in the Kohn-Sham (KS) [36] or Hartree-Fock (HF) [44,45] SCF theories. For
the stationary molecular states, corresponding to the vanishing thermodynamic phase
φ = 0 ≡ φ0, the optimum (real) reduced-momentum vectors k [p0] ≡ k0 [p0] =
{k0

l [p0]} result from the (vertical) minimum energy principle determining the best
(orthonormal) equidensity orbitals ϕk [p0; r] that minimize the average value of the
system electronic energy:

min
k →ρ0 〈
k(N )| Ĥ(N ) |
k(N )〉
= 〈


k0[p0](N )
∣∣ Ĥ(N )

∣∣
k0[p0](N )
〉 = Ek0[p0](N ) ⇒ 
k0[p0](N ). (82)
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The optimum (stationary-state) determinant 
k0[p0](N ) then generates the best vari-
ational estimate Ek0[p0](N ) of the ground-state energy E0 = Ev[ρ0] in the HZM
representation. This energy variational procedure implies the typical Euler-Lagrange
problem of the auxiliary energy functional absorbing the orbital orthonormality con-
straints enforced by the relevant Lagrange multipliers.

The associated (vertical) equilibrium state 
k0[p0][N , ϕeq.[p0]] results from the
extra (Fisher) EPI:

inf
→ρ0 I [
] = I class. [p0] + inf
→ρ0 I nclass. [p0, k0[p0], φ]

⇒ 
k0[p0][N , ϕeq.[p0]]. (83)

In the HZM construction the lowest equilibrium state is thus determined by the best
SCF values of the “wave-number” vectors k0 [p0] = {

k0
l [p0]

}
of the energy varia-

tional principle of Eq. (82) and the optimum thermodynamic phase due to the orbital
orthogonality [Eq. (77)]

φ(r) = φeq. [r; p0] = −
(

1

N

N∑
l=1

k0
l [p0]

)
· f 0(r) ≡ −K(k0[p0]) · f 0[r; p0]. (84)

Together they uniquely specify the N lowest, singly-occupied (complex), othonormal
spin-orbitals of the vertical-equilibrium Slater determinant 
k0[p0][N , ϕeq.[p0]]. The
minimum Fisher information principle thus involves a search for the optimum equiden-
sity orbitals of N electrons in the ground-state electron distribution ρ0 = N p0, deter-
mined by the energy-optimum “wave-number” vectors k0 [p0] and the equilibrium
phase φeq. [p0] [see Eq.(78)].

The classical and non-classical parts of the densities-per-electron of the quantum
measures of the resultant Fisher and Shannon information descriptors are mutually
related, with the former being determined by the squared gradient of the latter [Eq.
(28)]. One further observes that for the fixed ground-state distribution of electrons,
in the “internal” (vertical) search, only the non-classical components depend upon
the “wave-number” vectors k0 [p0] ≡ k0 and the thermodynamic phase function
φ(r), which together determine the resultant phase in Harriman’s construction, to be
optimized in the adopted energy or EPI principle. Thus the infimum of the Fisher
measure implies the supremum of the average gradient of the wave function and hence
its lowest degree of structure (“order”). This further implies the highest admissible
degree of the wave-function indeterminacy (“disorder”) marked by the supremum of
the complementary measure of the quantum Shannon entropy:

S
[

k0

] = S[p0] + sup
k0 →p0
S[p0, k0, φ] ⇒ 
k0[p0][N , φeq.[p0]]. (85)

Therefore, the two quantum generalized measures of the information content of the
complex wave-function in the Harriman-type construction are complementary in char-
acter: the ground-state density/energy constrained EPI of the lowest quantum Fisher
information is synonymous with the related principle of the highest quantum Shan-
non entropy. This is again reminiscent of the complementary equilibrium criteria of
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the minimum energy and the maximum entropy in phenomenological thermodynamics
[33].

5 Phase descriptors of molecular fragments

This phase approach to equilibria in molecules offers a new perspective on the pro-
moted states of molecular fragments {Mα}, e.g., reactants {Rα}, AIM {Xα}, etc., which
determine the mutully exclusive pieces {ρα = Nα pα}, Nα = ∫

ρα(r)dr, of the system
resultant density ρ = Np in the isoelectronic molecular (M) or promolecular (M0)

systems as a whole:

ρ(r) =
∑
α

ρα(r) =
∑
α

Nα pα(r) = N p(r)

p(r) =
∑
α

(Nα/N )pα(r) ≡
∑
α

Pα pα(r),

∑
α

Pα =
∫

pα(r)dr = 1,
∑
α

Nα = N =
∑
α

N 0
α = N 0. (86)

The (isoelectronic) promolecule corresponding to the given neutral system consists
of its (molecularly) placed free constituent atoms. By linking the horizontal equilib-
rium phase to the system electron distribution one can explicitly specify the molec-
ular/promolecular origins of such subsystems, thus distinguishing the isolated frag-
ments, surrounded by an empty space, from their molecular/promolecular analogs.
Indeed, the latter represent constituent parts of a larger (composed) system, being
surrounded by their respective molecular/promolecular remainders. Thus, the inter-
nal equilibrium states of isolated species are fully determined by their own densities
alone, while the phases of the external equilibria in molecular fragments are fixed by
the density of a larger, composed system they belong to.

For example, the free (isolated, infinitely separated) atoms {X0
α(∞)}, exhibiting

the atomic/ionic ground-state densities {ρ0
α = N 0

α p0
α}, N 0

α = integer, and surrounded
by an empty space are now characterized by the equilibrium phases {ϕ0

α,eq. (∞) =
φeq.

[
r; N 0

α, p0
α

]}, while their promolecular analogs of the same densities, i.e., the
molecularly placed free-atoms, now correspond to the inter-fragment equalized pro-
molecular phase {ϕ0

α,eq.

(
M0

) = φeq.

[
r; N 0, p0

]} determined by the overall density
or probability distribution of the whole composed system M0:

p0(r) = ρ0(r)/N 0, ρ0(r) =
∑
α

ρ0
α(r) =

∑
α

N 0
α p0

α(r) = N 0 p0(r) or

p0(r) =
∑
α

(N 0
α/N )p0

α(r) ≡
∑
α

P0
α p0

α(r),
∑
α

P0
α =

∫
p0
α(r)dr = 1. (87)

The equilibrium states of molecular fragments, e.g., the bonded atoms {Xα} cor-
responding to densities {ρα(r)}, i.e., the AIM pieces of the molecular ground-state
density ρ(r) , are similarly specified by the equilibrium phase of the whole molecule
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M, {ϕα,eq. (M) = φeq. [r; N , p0]}, determined by the molecular ground-state proba-
bility distribution p0, while the isolated AIM fragments, in an empty space, exhibit
the subsystem phases {ϕα,eq. (∞) = φeq. [r; Nα, pα]}.

Therefore, the present approach provides the full specification of molecular frag-
ments, including both the density/probability distribution of the fragment itself and
its equilibrium phase identyfying the composed system from which this subsystem
originates. The “frozen”, molecularly placed free-atoms in the system promolecule,
are thus phase-promoted compared to their isolated analogs. The promolecular den-
sity ρ0(r) thus induces the promolecular current in the molecularly placed free atom
X0

α(M0),

j0
α(M0) = h̄

m
p0
α∇ϕ0

α,eq.(M
0) = − h̄

2m

(
p0
α

p0

)
∇ p0, (88)

which differs from the equilibrium current in the isolated atom X0
α(∞),

j0
α(∞) = h̄

m
p0
α∇φ0

α,eq.(∞) = − h̄

2m
∇ p0

α. (89)

It should be noticed that the ratio p0
α(r)/p0(r) in Eq. (88) is related to the corresponding

local Hirshfeld (H) “share” dH
α (r) in the “stockholder” partition [9–11,25] of the mole-

cular electron density ρ(r) into AIM pieces {ρH
α (r) = N H

α pH
α (r)}, N H

α = ∫
ρH

α (r)dr,

ρH
α =

(
ρ0

α/ρ0
)

ρ ≡ dH
α ρ, dH

α = P0
α

(
p0
α/p0

)
. (90)

A similar current-distinction between the equilibrium state of the isolated AIM frag-
ments {Xα(∞)} and the corresponding bonded atoms {Xα(M)} in a molecule reads:

jα(∞) = h̄

m
pα∇ϕα,eq.(∞) = − h̄

2m
∇ pα and

jα(M) = h̄

m
pα∇ϕα,eq.(M) = − h̄

2m

(
pα

p

)
∇ p. (91)

In the stockholder partitioning [25], for which [see Eq. (90)]

dH
α = ρH

α /ρ = N H
α pH

α / (N p) ≡ PH
α (pH

α /p) = d0
α ≡ ρ0

α/ρ0 = P0
α

(
p0
α/p0

)
, (92)

the local ratio of the AIM and molecular probability distributions in Eq. (91) reads:

(pH
α /p) = (P0

α /PH
α )

(
p0
α/p0

)
= (N 0

α/N H
α )

(
p0
α/p0

)
. (93)

One also observes that the Hirshfeld division scheme can be interpreted as the universal
(AIM-independent) enhancement of the free-atom densities:

ρH
α = ρ0

α(ρ/ρ0) ≡ ρ0
αw, α = A, B, . . . , (94)
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Fig. 1 A qualitative analysis of directions/magnitudes of the equilibrium AIM current jHα (M) in the left
hydrogen of H2 for the axial cut of the stockholder partition of the electron density in H2. The Hirshfeld
electron densities of the bonded hydrogen atoms (HH) are obtained by the stockholder partition of the
molecular density (H2). The free-hydrogen densities (H0) and the resulting electron density of the pro-
molecule (H0

2) are also shown for comparison. The density values and distances are in a.u. The zero cusps
at nuclear positions are artifacts of the Gaussian basis set used in DFT calculations. The same patterns of
directions/magnitudes characterize the equilibrium currents j0α(M0) of constituent atoms {X0(M0)} in the
promolecule M0

where the molecular enhancement factor

w = ρ/ρ0 = p/p0 = ρH
α /ρ0

α =
(

N H
α /N 0

α

) (
pH
α /p0

α

)
. (95)

The equilibrium states of isolated molecular fragments are thus distinguished from
those of their bonded analogs by their phase/current descriptors. The bonded subsys-
tems are characterized by the gradients of the molecular phase, related to molecular
velocities of the probability fluid, while the free fragments exhibit the particle veloci-
ties of the subsystem in question. The change in the Hirshfeld AIM current due to the
bond formation with its molecular environment reads:

	jH
α (M;∞) = jH

α (M) − jH
α (∞) = − h̄

2m

[
pH
α (∇ ln p − ∇ ln pH

α )
]

= h̄

2m
pH
α ∇ ln

(
pH
α

p

)
= h̄

2m
pH
α ∇ ln

(
dH
α

PH
α

)
. (96)

Of interest also are displacements in the equilibrium currents of bonded atoms
relative to their respective free analogs in the promolecular reference:

	jH
α (M; M0) = jH

α (M) − j0
α(M0) = h̄

2m

(
p0
α

p0 ∇ p0 − pH
α

p
∇ p

)
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= h̄

2m

pH
α

p

[(
N H

α

N 0
α

− w

)
∇ p0 − p0∇w

]

= h̄

2m

dH
α

PH
α

[(
N H

α

N 0
α

− w

)
∇ p0 − p0∇w

]
. (97)

As an illustration we have qualitatively examined in Fig. 1 the directions and relative
magnitudes of the equilibrium probability currents in the Hirshfeld AIM (HH) in
H2, implied by the gradient of the thermodynamic contribution, −(1/2) ln p, of the
molecular equilibrium phase. As shown in the figure, the direction of electron flow is
determined by the negative gradient of the molecular density (H2), while its resultant
magnitude results from a subsequent weighting of this gradient with the Hirshfeld share
factor, reflecting a local participation of the free atom density (H0) in the promolecular
distribution (H0

2). Directions of local currents in the bonding region, between the two
nuclei, are seen to concentrate electrons near the mid point of this prototype covalent
chemical bond, while in the non-bonding regions they tend to expand the atomic
distributions, effectively promoting a larger size of bonded atoms in their effective
“valence” states. The bonding flows thus tend to enhance the known effects of the
chemical bond, manifested by the polarization of the bonded atoms towards their
molecular partners, while the non-bonding (promotional) “flows” act in a direction to
restore the initial electron distribution of an isolated hydrogen, which is seen to be more
“diffused” compared to the stockholder AIM. One also observes that the same pattern
of directions/magnitudes of the probability currents describes the constituent free-
atomic fragments of the system promolecule. In the bonding region these equilibrium
flows are thus seen to “push” these atomic fragments towards their eventual equilibrium
state in the molecule.

6 Elements of non-equilibrium thermodynamic description

For reasons of simplicity we again focus on one-electron systems, N = 1, when
particle density “variable” also reflects its probability distribution: ρ(r) = p(r). This
density and the current distribution j(r), which respectively reflect the modulus- and
phase-parts of a general (complex) quantum state of Eq. (1), constitute two independent
degrees-of-freedom of the system electronic structure.

The first “variable” ρ(r) represents the local extensive parameter, since its value in
the composite molecular system is the sum of its values in the molecular subsystems
of interest. In the closed system the closure condition then requires

∑
α

∫
ρα(r)dr =

∑
α

Nα =
∫

ρ(r)dr = N 0, an integer constant. (98)

Since this extensive parameter can be neither produced nor destroyed, the local change
in electron density is solely due to the particle outflow, represented by the negative
divergence of probability current j(r), thus giving rise to the source-less form of the
continuity equation [Eqs. (10,11)].
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The phase “variable” itself is not extensive in character and so is the phase-density
π = φ2. In fact these two variables can be regarded as “thermodynamic” intensities,
since their local values in the equilibrium state of molecular subsystems are equalized
at the corresponding values of these phase descriptors of the system as a whole. Thus,
the product of the given intensive phase parameter, e.g., ∇φ, with the appropriate
density component, e.g., ρ(r)∇φ(r) = p(r)∇φ(r) in Eq. (3), constitutes a bona-fide
extensive parameter of general molecular states.

These two independent degrees of freedom are mutually coupled, evolving in time
in accordance with the SE (7). Elsewhere [16,17] an attempt has been made to derive
the continuity equation for the phase-density aspect of the molecular electronic struc-
ture, with an appropriately defined phase-current, which in general quantum states
was shown to exhibit a non-vanishing phase-source. Since these earlier identifica-
tions were non-unique, in this section we shall briefly reexamine these concepts in
an attempt to provide a fully symmetric treatment of the density and phase aspects
of molecular states. We shall also introduce the associated concept of the quantum
entropy-current and derive the associated expression for the entropy-source in the
associated continuity equation. Establishing these elementary concepts is vital for
ultimately confronting the rates of non-equilibrium processes in molecular/reactive
systems and providing their phenomenological description, in the spirit of the ordinary
irreversible thermodynamics [33].

One first observes that the local currents (j, J), of the particle density and of the
state phase-density π , respectively, are driven by the same particle velocity [see Eq.
(13)],

V = (h̄/m) ∇φ = [h̄/ (mp)] Im[ϕ∗∇ϕ]. (99)

This common speed of the probability and phase “fluids” reflects the associated
currents-per-particle:

V = j/p = (h̄/m)∇φ = [h̄/ (mp)] Im[ϕ∗∇ϕ] ≡ J/π. (100)

The two currents thus exhibit the same direction as V and their magnitudes are inter-
related:

j/J = (p/π). (101)

Since the probability current j reflects the phase-gradient ∇φ, one would expect that
the phase current J should be linked to the probability-gradient. These hints lead to the
following, symmetrical treatment of the flows (fluxes) exhibited by these two indepen-
dent degrees-of-freedom of molecular states, which ultimately reflect the independent
real and imaginary parts of the system wave function:

j = (h̄/m) p∇φ = (h̄/2m) (p/φ)∇π ≡ j p,

J = (h̄/m) π∇ R = (h̄/2m) (π/R)∇ p ≡ Jπ . (102)
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From the SE (7) and its Hermitian conjugate one obtains the following time derivatives
of the distribution amplitudes [16,17],

∂ R/∂t = − (h̄/m) [∇ R · ∇φ + (R/2) 	φ], (103)

∂φ/∂t = (h̄/2m)][(∇φ)2 − R−1	R] − v/h̄, (104)

and hence also the associated derivatives of the distributions themselves:

∂p/∂t = 2R(∂ R/∂t) and ∂π/∂t = 2φ(∂φ/∂t). (105)

We shall now apply these time derivatives in the associated continuity equations.
One directly verifies that the probability derivative gives rise to Eq. (10), where the
divergence of the probability-current

∇ · j = (h̄/m) [∇ p · ∇φ + p	φ]= (h̄/m)[2R∇ R · ∇φ + R2	φ]. (106)

For the divergence of the phase-current one similarly obtains the complementary
expression:

∇ · J = (h̄/m) [∇π · ∇ R + π	R]= (h̄/m)[2φ∇φ · ∇ R + φ2	R]. (107)

Combining Eqs. (104), (105) and (107) then gives the following source of the phase
density in the continuity equation for this component:

dπ/dt ≡ π̇ = σπ = ∂π/∂t + ∇ · J

= φ{(h̄/m) [(∇φ + 2∇ R) · ∇φ + (φ − R−1)	R] − 2v/h̄}. (108)

Next, let us address the related problem of the quantum-entropy source. Following the
standard approach in ordinary irreversible thermodynamics [33], we first identify the
quantum-entropy conjugates of the state two local state variables p and π ,

Fp(r) = δS[ϕ]/δp(r) = ∂S (r)
∂p(r)

= − lnp(r) − 2π(r)1/2 − 1,

Fπ (r) = δS[ϕ]/δπ(r) = ∂S (r)
∂π(r)

= −p(r)/π(r)1/2. (109)

They determine the associated affinities, “thermodynamic” forces, defined as gradients
of these intensities:

F p = ∇Fp = −[p−1∇ p + 2∇(π1/2)] = −2[R−1∇ R + ∇φ],
Fπ = ∇Fπ = π−1[p∇(π1/2) − π1/2∇ p] = 2(R/φ)[(R/φ)∇φ − 2∇ R]. (110)

One also introduces the current density of the local quantum entropy,

JS (r) = Fp(r)j p(r) + Fπ (r)Jπ (r), (111)
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determining in the entropy continuity equation the rate of increase of the entropy
density within the infinitesimal region in question:

dS (r)/dt ≡ Ṡ (r) = σS (r) = ∂S (r)/∂t + ∇ · JS (r). (112)

Its first term is suggested by the entropy differential

d S[ϕ] = d S[p, π ] =
∫

∂S (r)
∂p(r)

dp(r)dr +
∫

∂S (r)
∂π(r)

dπ(r)dr

=
∫

[Fp(r)dp(r)+Fπ (r)dπ(r)]dr, (113)

and determined by Eqs. (103)–(105):

∂S (r)/∂t = Fp(r)
∂p(r)
∂t

+ Fπ (r)
∂π(r)

∂t
. (114)

The divergence of Eq. (111),

∇ · JS = (∇Fp) · j p + Fp∇ · j p + (∇Fπ ) · Jπ + Fπ∇ · Jπ , (115)

combined with the probability and phase continuity relations [Eqs. (11) and (108)]
finally gives the following, thermodynamic-like expression for the rate of the local
production of quantum entropy:

σS (r) = F p(r) · j p(r) + Fπ (r) · Jπ (r) + Fπ (r)σπ (r). (116)

Therefore, the entropy production identically vanishes only in the stationary quantum
state, e.g., the exact ground state of a molecule, for φ = 0, i.e., σπ = 0, when both
affinities vanish: F p = F π = 0. However, contrary to the ordinary irreversible ther-
modynamics [33], these zero affinities do not lead to the vanishing quantum entropy
source in general quantum states, for which both Fπ and σπ assume nonzero values.

7 Conclusion

The quantum extension of the classical entropy/information concepts accounts for the
information content due to both the density and probability current (phase) distribu-
tions in the complex electronic states. In this generalized framework the non-classical
(quantum) information contributions complement the classical Fisher and Shannon
information measures, functionals of the particle probability distribution alone, in the
resultant entropic descriptors, which extract the full information content of the complex
probability amplitudes (wave functions) of the quantum mechanical description.

The entropic variational principles for determining the molecular vertical and hor-
izontal equilibria, for the fixed and unconstrained particle density, respectively, have
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been investigated. These phase-equilibria of atomic and molecular systems corre-
spond to the extrema of quantum information measures. The vertical principle iden-
tifies the orthogonality phase, giving rise to the vanishing overall current, as in the
stationary ground-state, while the horizontal rule gives rise to the IT-optimum phase
related to the logarithm of the system electron probability distribution. The latter
generates a non-vanishing probability current responsible for the finite non-classical
entropy/information contributions.

The double (density and phase/current) description of molecular fragments, e.g.,
AIM, provides the full specification of the equilibrium states of such subsystems. The
equilibrium quantum information descriptors then reflect both the molecular origins of
AIM and the environment of isolated atoms in the system promolecule. Implications of
the phase-equilibria for the state of bonded Hirshfeld atoms in H2 have been examined
in some detail. We have argued, that such complete specification of the subsystem
equilibria requires the entropic representation of IT. Indeed, the EPI principles of the
latter determine the fragment equilibrium phase, which reflects its environment in a
larger, composite system.

Finally, the elements of an irreversible-thermodynamical description of molecular
states have been introduced. They include the state-parameters reflecting the particle
probability (wave-function modulus) and the particle current (wave-function phase),
their associated quantum-entropy conjugates (“intensities”) and affinities (gradients of
“intensities”). The phase-continuity equation has been derived, the quantum entropy
current has been introduced and the associated entropy continuity equation has identi-
fied the local entropy production in general quantum states. The latter has been shown
to identically vanish only for the vanishing affinities in the stationary quantum state,
for the sharply specified electronic energy and vanishing spatial phase.
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